China Good quality for BMW Belt Tensioner 11282244754 11282243592 1340539 cv axle replacement

Product Description

BMW BELT TENSIONER 134571

OEM:134571
1340543 90509273 9571627

REF NO:
APV2091
FEBI 1571
GATES T36161
INA 531072710
RUVILLE 55571
SKF VKM38220

SIZE:70*23

FIT FOR
VBMW 3
BMW 5 Touring

Product Parameters

OEM NO.

  134571
  Application   BMW

Place of Origin

ZHangZhoug, China

Material

   Aluminium
  Product Name

Belt Tensioner

Reference NO.

 

Packing

Neutral Packing

SHIPPING TERM

Sea/Air

Quality

100%tested

Size

same as OEM

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Certification: CCC, ISO9001, TS16949
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

v belt tensioner

What role do materials and coatings play in the performance and longevity of V-belt tensioners?

Materials and coatings play a crucial role in the performance and longevity of V-belt tensioners. The choice of materials and the application of appropriate coatings directly impact the tensioner’s ability to withstand the operating conditions, resist wear and corrosion, and ensure optimal performance throughout its lifespan. Here’s a detailed explanation of the role materials and coatings play in the performance and longevity of V-belt tensioners:

  • Material Strength and Durability:
  • The materials used in the construction of V-belt tensioners need to possess sufficient strength and durability to withstand the forces and stresses encountered during operation. Common materials include metals such as steel, cast iron, or aluminum, as well as durable polymers like nylon or polyurethane. These materials are chosen for their ability to resist deformation, fatigue, and wear, ensuring that the tensioner can maintain consistent tension over a prolonged period.

  • Corrosion Resistance:
  • V-belt tensioners may be exposed to various environmental conditions that can lead to corrosion, such as moisture, chemicals, or high temperatures. The choice of materials with good corrosion resistance is essential to prevent degradation and maintain the tensioner’s performance. Stainless steel, coated metals, or corrosion-resistant polymers are commonly used to enhance the tensioner’s resistance to corrosion, extending its lifespan and reducing the risk of premature failure.

  • Friction and Wear Reduction:
  • The materials and coatings used in V-belt tensioners can help reduce friction and wear between the tensioner and the V-belt. Low-friction materials, such as certain polymers or coated surfaces, can minimize the energy losses caused by friction, improve efficiency, and reduce heat generation. Coatings like Teflon, ceramic, or diamond-like carbon (DLC) can be applied to critical contact surfaces to provide additional lubricity and wear resistance, prolonging the tensioner’s lifespan.

  • Heat Resistance:
  • V-belt tensioners are often exposed to elevated temperatures generated by the engine or other operating machinery. The materials used in the tensioner should possess good heat resistance to maintain their mechanical properties and prevent deformation or failure under high-temperature conditions. Heat-resistant alloys, heat-treated steel, or high-temperature polymers are commonly employed to ensure the tensioner’s performance and longevity in hot environments.

  • Sealing and Contamination Prevention:
  • Materials and coatings can contribute to the sealing and contamination prevention capabilities of V-belt tensioners. Seals or gaskets made from materials such as rubber or elastomers are used to create a barrier against the ingress of contaminants, moisture, or dust into the tensioner’s internal components. Additionally, certain coatings can provide a protective barrier against environmental factors, preventing the build-up of debris or the penetration of harmful substances, which can compromise the tensioner’s performance and lifespan.

  • Weight and Mass Reduction:
  • Materials and coatings that offer high strength-to-weight ratios can contribute to the overall weight and mass reduction of V-belt tensioners. By using lightweight materials or applying coatings that reduce the need for bulky components, the tensioner’s weight can be minimized. This not only improves the efficiency of the system but also reduces the stress on other components and supports the overall longevity of the tensioner and the V-belt system.

In summary, materials and coatings play a vital role in the performance and longevity of V-belt tensioners. The selection of materials with the appropriate strength, durability, corrosion resistance, heat resistance, and friction-reducing properties ensures that the tensioner can withstand the operating conditions and maintain optimal performance throughout its lifespan. Additionally, the application of suitable coatings can further enhance the tensioner’s resistance to wear, corrosion, and contamination, contributing to its longevity and reliability in V-belt systems.

v belt tensioner

How do V-belt tensioners contribute to reducing wear and increasing the efficiency of power transmission?

V-belt tensioners play a critical role in reducing wear and increasing the efficiency of power transmission in V-belt systems. They help maintain proper belt tension, ensuring optimal grip between the belt and pulleys. Here’s a detailed explanation of how V-belt tensioners contribute to reducing wear and increasing power transmission efficiency:

  • Maintaining Proper Belt Tension:
  • V-belt tensioners are designed to apply and maintain the correct tension in V-belt systems. When the tension is too loose, the belt can slip on the pulleys, leading to increased wear on the belt and reduced power transmission efficiency. Conversely, when the tension is too tight, excessive stress is placed on the belt and other system components, resulting in accelerated wear. V-belt tensioners ensure the optimal tension level, preventing slippage and excessive stress, and minimizing wear.

  • Optimizing Belt Grip:
  • Proper tensioning of V-belts ensures optimal grip between the belt and pulleys. The tensioner maintains the desired tension, which allows the belt to effectively engage the pulley grooves. This optimal grip ensures efficient power transmission, as the friction between the belt and pulleys enables the transfer of rotational force. By maximizing belt grip, V-belt tensioners minimize power losses due to slippage, enhancing the overall efficiency of power transmission.

  • Reducing Belt Slippage:
  • One of the main causes of wear in V-belt systems is belt slippage. Slippage occurs when the belt loses traction with the pulleys, resulting in a loss of power transmission efficiency and increased wear on the belt. V-belt tensioners help prevent slippage by maintaining the proper tension, which ensures that the belt remains securely engaged with the pulleys. By reducing belt slippage, V-belt tensioners minimize wear on the belt and other components, improving the overall system efficiency.

  • Promoting Even Load Distribution:
  • Proper tensioning of V-belts helps promote even load distribution across the belt and pulleys. When the tension is correctly set, the load is evenly distributed along the width of the belt, minimizing localized stress points. This even load distribution reduces wear on specific areas of the belt, prolonging its lifespan. Additionally, by evenly distributing the load, V-belt tensioners help prevent premature wear on the pulleys and other components, contributing to increased system efficiency.

  • Minimizing Belt Vibrations:
  • Improperly tensioned V-belts can induce vibrations during operation, leading to increased wear and reduced power transmission efficiency. V-belt tensioners help minimize belt vibrations by maintaining the correct tension, ensuring a stable and secure operation. By reducing belt vibrations, V-belt tensioners contribute to decreased wear on the belt and other system components, improving power transmission efficiency.

In summary, V-belt tensioners contribute to reducing wear and increasing power transmission efficiency by maintaining proper belt tension, optimizing belt grip, reducing belt slippage, promoting even load distribution, and minimizing belt vibrations. These factors collectively ensure efficient power transfer, reduce wear on the belt and other system components, and enhance the overall performance and longevity of V-belt systems.

v belt tensioner

What is a V-belt tensioner, and how does it contribute to the performance of V-belt systems?

A V-belt tensioner is a mechanical component used in V-belt systems to maintain proper tension in the V-belt. It plays a crucial role in ensuring optimal performance and functionality of V-belt systems. Here’s a detailed explanation of what a V-belt tensioner is and how it contributes to the performance of V-belt systems:

  • Definition and Function:
  • A V-belt tensioner is a device designed to apply and maintain the correct tension in a V-belt. It typically consists of a pulley mounted on a movable arm or spring-loaded mechanism. The tensioner is installed in the V-belt drive system and exerts pressure on the belt to achieve the desired tension. Its primary function is to counteract the natural elongation and slackening of the V-belt over time, ensuring optimal power transmission and preventing slippage between the belt and the pulleys.

  • Tension Maintenance:
  • The main contribution of a V-belt tensioner is to maintain the proper tension in the V-belt throughout its operational life. Over time, V-belts can stretch and elongate due to factors such as normal wear, temperature changes, or load variations. The tensioner compensates for this elongation by automatically adjusting the tension as needed. It applies force to keep the belt tightly engaged with the pulleys, preventing slackening and maintaining the required tension for efficient power transmission. By ensuring consistent tension, the tensioner minimizes the risk of belt slippage, improves system performance, and extends the lifespan of the V-belt.

  • Prevention of Slippage:
  • Slippage between the V-belt and the pulleys is a common issue in belt drive systems that can result in decreased performance and power transmission efficiency. The V-belt tensioner plays a critical role in preventing slippage. By maintaining the appropriate tension, the tensioner ensures a secure grip between the V-belt and the pulleys, minimizing the risk of slippage under normal operating conditions. This enhanced grip allows for efficient power transfer, accurate timing in timing belt applications, and reliable operation of the V-belt system.

  • Load Handling:
  • V-belt tensioners also contribute to the effective handling of varying loads in V-belt systems. As loads fluctuate, the tension in the V-belt needs to be adjusted to accommodate the changes. The adjustability feature of V-belt tensioners allows for fine-tuning of the tension, ensuring that the V-belt remains properly tensioned under different load conditions. This flexibility helps optimize power transmission, prevent slippage, and maintain reliable performance, even when the system experiences varying loads.

  • Reduced Wear and Maintenance:
  • Proper tension provided by V-belt tensioners helps reduce wear on the V-belt and other system components. Slippage between the V-belt and the pulleys can cause accelerated wear on both the belt and the pulleys. By preventing slippage, tensioners minimize the frictional forces that lead to excessive wear. They distribute the load evenly across the V-belt, reducing localized wear and extending the lifespan of the belt. Additionally, by maintaining optimal tension, V-belt tensioners contribute to reduced maintenance needs, as they help prevent issues such as misalignment, excessive wear, or premature failure that can result from inadequate tension.

  • System Reliability:
  • V-belt tensioners enhance the overall reliability of V-belt systems. By maintaining the proper tension and preventing slippage, tensioners ensure consistent power transmission and reliable performance. This reduces the risk of unexpected power losses, interruptions in operation, or damage to other system components. V-belt tensioners contribute to the overall reliability and uptime of V-belt systems, enhancing productivity and minimizing costly downtime.

In summary, a V-belt tensioner is a mechanical component that maintains proper tension in V-belt systems. It plays a critical role in preventing slippage, maintaining tension, handling varying loads, reducing wear and maintenance, and enhancing the reliability of V-belt systems. By ensuring optimal tension and preventing slippage, V-belt tensioners contribute to efficient power transmission, extended belt life, and reliable operation in a wide range of applications.

China Good quality for BMW Belt Tensioner 11282244754 11282243592 1340539   cv axle replacementChina Good quality for BMW Belt Tensioner 11282244754 11282243592 1340539   cv axle replacement
editor by CX 2024-01-19