Product Description
Part Name | Transition pulley timing belt tensioner | Car model | For SAIC MAXUS LDV V80 VM R425 R428 |
Part Number | 1571571RAA | high quality genuine |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Yes |
---|---|
Warranty: | One Year |
Car Make: | Brand |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What role do materials and coatings play in the performance and longevity of V-belt tensioners?
Materials and coatings play a crucial role in the performance and longevity of V-belt tensioners. The choice of materials and the application of appropriate coatings directly impact the tensioner’s ability to withstand the operating conditions, resist wear and corrosion, and ensure optimal performance throughout its lifespan. Here’s a detailed explanation of the role materials and coatings play in the performance and longevity of V-belt tensioners:
- Material Strength and Durability:
- Corrosion Resistance:
- Friction and Wear Reduction:
- Heat Resistance:
- Sealing and Contamination Prevention:
- Weight and Mass Reduction:
The materials used in the construction of V-belt tensioners need to possess sufficient strength and durability to withstand the forces and stresses encountered during operation. Common materials include metals such as steel, cast iron, or aluminum, as well as durable polymers like nylon or polyurethane. These materials are chosen for their ability to resist deformation, fatigue, and wear, ensuring that the tensioner can maintain consistent tension over a prolonged period.
V-belt tensioners may be exposed to various environmental conditions that can lead to corrosion, such as moisture, chemicals, or high temperatures. The choice of materials with good corrosion resistance is essential to prevent degradation and maintain the tensioner’s performance. Stainless steel, coated metals, or corrosion-resistant polymers are commonly used to enhance the tensioner’s resistance to corrosion, extending its lifespan and reducing the risk of premature failure.
The materials and coatings used in V-belt tensioners can help reduce friction and wear between the tensioner and the V-belt. Low-friction materials, such as certain polymers or coated surfaces, can minimize the energy losses caused by friction, improve efficiency, and reduce heat generation. Coatings like Teflon, ceramic, or diamond-like carbon (DLC) can be applied to critical contact surfaces to provide additional lubricity and wear resistance, prolonging the tensioner’s lifespan.
V-belt tensioners are often exposed to elevated temperatures generated by the engine or other operating machinery. The materials used in the tensioner should possess good heat resistance to maintain their mechanical properties and prevent deformation or failure under high-temperature conditions. Heat-resistant alloys, heat-treated steel, or high-temperature polymers are commonly employed to ensure the tensioner’s performance and longevity in hot environments.
Materials and coatings can contribute to the sealing and contamination prevention capabilities of V-belt tensioners. Seals or gaskets made from materials such as rubber or elastomers are used to create a barrier against the ingress of contaminants, moisture, or dust into the tensioner’s internal components. Additionally, certain coatings can provide a protective barrier against environmental factors, preventing the build-up of debris or the penetration of harmful substances, which can compromise the tensioner’s performance and lifespan.
Materials and coatings that offer high strength-to-weight ratios can contribute to the overall weight and mass reduction of V-belt tensioners. By using lightweight materials or applying coatings that reduce the need for bulky components, the tensioner’s weight can be minimized. This not only improves the efficiency of the system but also reduces the stress on other components and supports the overall longevity of the tensioner and the V-belt system.
In summary, materials and coatings play a vital role in the performance and longevity of V-belt tensioners. The selection of materials with the appropriate strength, durability, corrosion resistance, heat resistance, and friction-reducing properties ensures that the tensioner can withstand the operating conditions and maintain optimal performance throughout its lifespan. Additionally, the application of suitable coatings can further enhance the tensioner’s resistance to wear, corrosion, and contamination, contributing to its longevity and reliability in V-belt systems.
Can you explain the principles behind the operation and adjustment of V-belt tensioners?
The operation and adjustment of V-belt tensioners are based on specific principles that ensure the proper functioning of V-belt systems. Understanding these principles is essential for maintaining optimal belt tension and maximizing the efficiency and reliability of power transmission. Here’s a detailed explanation of the principles behind the operation and adjustment of V-belt tensioners:
- Importance of Initial Tension:
- Dynamic Tension and Belt Flexibility:
- Automatic Tensioning Mechanisms:
- Tension Adjustment and Belt Alignment:
- Monitoring Belt Tension:
The initial tension of a V-belt, also known as the installation tension or static tension, is the tension applied to the belt before it begins operation. This initial tension is crucial for achieving the desired belt performance. Proper initial tension ensures that the belt is securely seated in the pulley grooves and has the necessary grip to transmit power efficiently. V-belt tensioners are designed to establish the correct initial tension during installation or adjustment.
During operation, V-belts experience dynamic tension due to the forces exerted on them. Dynamic tension is the additional tension required to overcome the load and maintain proper belt tension while transmitting power. V-belts are designed to be flexible, allowing them to accommodate variations in tension as they move around the pulleys. The tensioner compensates for changes in dynamic tension, keeping the belt tension within the desired range to ensure efficient power transmission.
V-belt tensioners often utilize automatic tensioning mechanisms to maintain the desired belt tension. These mechanisms are designed to automatically adjust the tension as the belt wears or stretches over time. Common types of automatic tensioners include spring-loaded tensioners and hydraulic tensioners. Spring-loaded tensioners use a spring to apply a specific amount of constant tension to the belt. Hydraulic tensioners, on the other hand, utilize hydraulic pressure to adjust and maintain the tension. These automatic tensioning mechanisms compensate for belt elongation and wear, ensuring the proper tension is maintained throughout the belt’s lifespan.
V-belt tensioners allow for tension adjustment and belt alignment to maintain optimal performance. Tension adjustment is necessary when the belt becomes loose or tight due to wear, stretching, or other factors. The tensioner mechanism can be manually adjusted to increase or decrease the tension as needed. Proper belt alignment is also crucial for efficient power transmission and to prevent excessive wear. V-belt tensioners often incorporate features such as adjustable pulley positions or idler pulleys to facilitate belt alignment during installation or adjustment.
Regular monitoring of belt tension is essential for ensuring optimal performance and preventing premature wear or belt failure. Tension can be measured using various tension measuring tools, such as tension gauges or tensioning tools specific to V-belts. These tools help determine whether the belt tension falls within the recommended range and if any adjustment is required. By monitoring and maintaining the correct belt tension, V-belt tensioners contribute to reliable and efficient power transmission.
In summary, the principles behind the operation and adjustment of V-belt tensioners involve establishing proper initial tension, accounting for dynamic tension and belt flexibility, utilizing automatic tensioning mechanisms, allowing tension adjustment and belt alignment, and monitoring belt tension. These principles collectively ensure that V-belts are properly tensioned throughout their lifespan, enabling efficient power transmission and maximizing the longevity and reliability of V-belt systems.
Are there specific designs of V-belt tensioners for different applications, like automotive or industrial equipment?
Yes, there are specific designs of V-belt tensioners tailored for different applications, such as automotive or industrial equipment. The designs of V-belt tensioners are often optimized to meet the specific requirements and challenges of different industries and machinery. Here’s a detailed explanation:
- Automotive Applications:
- Industrial Equipment:
- HVAC Systems:
- Agricultural Machinery:
- Construction and Mining Equipment:
- Industry-Specific Applications:
In the automotive industry, V-belt tensioners are designed to meet the unique demands of automotive engines. Automotive tensioner designs often incorporate features that address factors such as limited space, high vibration, and exposure to extreme temperatures. These tensioners are typically compact and durable, ensuring reliable operation in the demanding automotive environment. They may also incorporate additional features like built-in damping mechanisms to reduce noise and vibration.
For industrial equipment, V-belt tensioners are designed to withstand the rigorous conditions typically encountered in industrial settings. These tensioners are often built with heavy-duty materials and robust construction to handle high loads and prolonged operation. They may include features like sealed bearings or protective covers to prevent contamination from dust, dirt, or debris. Industrial tensioner designs prioritize durability, longevity, and consistent performance in demanding industrial applications.
V-belt tensioners used in HVAC systems are designed to meet the specific requirements of heating, ventilation, and air conditioning equipment. These tensioners often prioritize quiet operation, as noise reduction is crucial in HVAC applications. They may incorporate features like low-friction materials or noise-dampening mechanisms to minimize belt noise. HVAC tensioner designs also consider space limitations and ease of installation and maintenance in HVAC equipment.
In agricultural machinery, V-belt tensioners are designed to withstand the harsh conditions of farming operations. These tensioners may have additional protection against environmental factors such as dust, moisture, and agricultural chemicals. Agricultural tensioner designs often prioritize ease of adjustment and maintenance, as these machines may require frequent belt changes or tension adjustments in the field.
V-belt tensioners used in construction and mining equipment are designed to handle heavy loads, shocks, and vibrations commonly encountered in these industries. These tensioners may have reinforced components and advanced sealing to withstand the rugged conditions of construction sites or mining operations. They are often designed with ease of installation and maintenance in mind, considering the challenging environments in which they are used.
In addition to the above examples, there are industry-specific V-belt tensioner designs tailored for particular applications. For example, tensioners used in the printing and paper industries may have features to minimize belt slippage and ensure precise registration of printing materials. Tensioners used in food processing machinery may have hygienic design features to meet sanitation requirements. Textile machinery may incorporate tensioners designed for high-speed operation and accurate tension control of drive belts.
Overall, V-belt tensioner designs are customized to address the specific needs, challenges, and operating conditions of different industries and machinery. These designs aim to optimize belt functionality, ensure reliable power transmission, and enhance the overall performance of the equipment in which they are employed.
editor by CX 2024-04-29
China wholesaler Timing Belt Tensioner Pulley 14510-RCA-A01 for Honda Ridgeline Crosstour wheel and axle
Product Description
Product Description
Brand Name | AL LAMP |
Product Name | Tension Timing Belt |
OE NO. | 14510-RCA-A01 |
Car Model | for Honda Ridgeline Crosstour |
Payment Method | T/T, Western Union, Credit Card, Bank Transfer, Cash. |
MOQ | 20 PCS |
Warrenty | 12 month |
Delivery Time | About 3-10 Days |
Our advantages:
1. Japanese technology, Chinese ex-factory price
2. Over 20000+ OEM, provide everything you need.
3. Ex-factory price, let you have enough profit
4. There is a 4000+ square warehouse, Large amount in stock, fast delivery
5. Professional auto parts supplier. More than 15 years of experience, worthy of your trust
Click here to get more about us!
We specialize in Korean and Japanese auto parts and also have a few American auto parts
1 Eletric system:abs speed sensor,FUEL PUMP,FUEL PUMP ASSY,Clock springs,Ignition coil
Sensor,Switch,sparkplug,Starter,Alternator,Air Compressor
2 Engine parts:Oil Pump,Air Filter Housing,TENSIONAL PULLY,Engine mount,Carburetor and kits,FAN CLUTCH,Belt parts,Air filter,Fuel filter,Transmission Filter,Water pump,Piston and Ring Set, Timing chain,Air house,Gasket kits,Clyinder head,Turbo charger parts
Radiator
3 Brake parts: BRAKE PADS,Brake Drum and disc,Brake shoe,Brake caliper,Brakecyliner, Brake booster, Brake adjuster
4 Trasmission system:Tripod Joints,Clutch disc and cover,Clutch master cylinder,Universaljoints Center bearing
5 Suspension parts:suspension bushing ,Control arm,Ball joint,shock absorber,Shock strut 6 Steering system:Bearings,Axle shaft,C.V joint,Powersteering rack,Power steering pump,Stabilizer link, Tie rod and Rack end,Steering knuckle
7 Body exterior:Front Fender,Oil Seal,Wiper Blades,Front Bumper,Lamp,front grille
8 High-quality original, made in ZheJiang , made in Mainland China, there are more than 4000 square meters of warehouse, many parts are in stock.
9 Please feel free to contact us for further information
Quality Assurance Factory Price High Quality, Auto parts For Different kinds of car models,
welcome to contact us for further information,Help you save time to find the product you need
Click here to contact us!!
Company Profile
HangZhou Xin Sande Auto Parts Co., Ltd. was established in HangZhou in 2008 . It mainly provides After-market products in ignition system, electronic system, engine system, suspension systems, cooling system for Japanese, American, German, French and Chinese cars, committed to providing customers with high-quality one-stop shopping services.
Over the years, Xin Sande relays on professional team, excellent product quality, and enthusiastic service, has won praises from customers all over the world. Xin Sande has exported more than 100,000 kinds of products to over 120 countries and regions , including Europe, United States, South America, Southeast Asia, Africa, Middle East, etc. Every product is delivered to consumers after going though regular test and inspection.
Xin Sande attaches great importance to training professional skills of staff and insists in visiting different countries every year to provide better service to customers. such as Russia, Uzbekistan, Vietnam, Malaysia, Thailand and other countries . “quality and service takes first priority” as Xin Sande’s mission, Every staff keeps the mission in mind and put it into action .
Xin Sande supports sample products , low minimum order quantity products and Customize products , insists on high-quality products, which wins many regular customers.
Xin Sande is committed to be the primary choice in auto parts industry with the commission of “quality and service takes first priority”. We are dedicated to working together with customers for CZPT cooperation.
Packaging & Shipping
We have many kinds of packaging,of course we can accept your own design,
we can customize the packaging for you
Welcome to customize your packaging>>
Certifications
FAQ
Q: What’s your MOQ?
A: MOQ usually is 20 pieces. (depend on which products you need)
Q: What’s your Payment terms?
A: 30% deposit, 70% balance payment before shipment.
Q: What payment method you accept?
A: Bank Tranfer, T/T, Credit Card, PayPal. Western Union.
Q: How do you control your quality?
A: All products were produced in high standards, and has passed component tests, unfinished tests and 100% products testing before delivery.
Q: How do you ship goods?
A: if you have shipping agent in China, we can send goods to your agent warehouse. If don’t have agent, we will long cooperated shipping company, you can choose by DHL, Fedex, or UPS. or shipping by sea, we will give you several solutions to choose.
Q: Can we customized the length, size or with different materials?
A: Yes, we will try our best to meet most of your needs.
Q: Can you produce the same product as mine if I provide you a sample?
A: Yes, we are capable of producing the electric parts for the most products.
Q: Can you provide me free sample first?
A: It depends on the sample’s cost, normally we can, but client need to pay the shipping cost.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | One Year Guarantee |
---|---|
Warranty: | One Year Guarantee |
Type: | Auto Belt |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What are the reliability and durability aspects of V-belt tensioners in ensuring consistent tension?
Reliability and durability are crucial aspects of V-belt tensioners in ensuring consistent tension in V-belt systems. A reliable and durable tensioner is essential for maintaining optimal belt performance, preventing slippage, reducing wear, and maximizing the lifespan of the belts. Here’s a detailed explanation of the reliability and durability aspects of V-belt tensioners:
- Construction Materials:
- Bearing Quality:
- Sealing and Lubrication:
- Tensioner Design and Engineering:
- Testing and Quality Control:
- Maintenance and Service:
- Manufacturer Reputation and Warranty:
The choice of construction materials plays a significant role in the reliability and durability of V-belt tensioners. High-quality materials, such as robust metals or durable polymers, are commonly used to withstand the forces and stresses encountered during operation. The materials should possess sufficient strength, corrosion resistance, and resistance to environmental factors to ensure long-term reliability and durability.
The quality and performance of the bearings used in V-belt tensioners are critical for their reliability. High-quality bearings ensure smooth rotation and proper functioning of the tensioner. Bearings with seals or protective coatings can provide additional protection against contamination, moisture, and debris, enhancing their durability and longevity.
Effective sealing and lubrication mechanisms in tensioners contribute to their reliability and durability. Seals or gaskets are used to prevent the ingress of contaminants, moisture, or dust into the tensioner, protecting its internal components and preserving its performance. Proper lubrication of moving parts, such as bearings or pivot points, reduces friction and wear, ensuring consistent tensioning and extending the tensioner’s lifespan.
The design and engineering of V-belt tensioners are crucial for their reliability and durability. A well-designed tensioner takes into account factors such as load capacity, operating conditions, and the specific requirements of the application. It should be engineered to withstand the expected forces, vibrations, and temperature variations encountered during operation, ensuring consistent tensioning over an extended period.
Manufacturers often subject V-belt tensioners to rigorous testing and quality control measures to ensure their reliability and durability. Testing may include load testing, endurance testing, temperature cycling, vibration testing, and environmental exposure testing. These measures help identify potential weaknesses, optimize design parameters, and validate the performance and durability of the tensioners before they are released to the market.
Proper maintenance and regular servicing of V-belt tensioners are essential for their long-term reliability. Following the manufacturer’s recommended maintenance schedule, including lubrication, inspection, and replacement of worn components, helps ensure consistent tensioning and extends the tensioner’s lifespan. Regular maintenance also allows for the early detection of any potential issues, allowing for timely corrective actions.
The reputation of the manufacturer and the warranty provided for the tensioners can be indicators of their reliability and durability. Established manufacturers with a track record of producing high-quality products are more likely to offer reliable and durable tensioners. A warranty that covers manufacturing defects or premature failures provides assurance and demonstrates the manufacturer’s confidence in the product’s reliability and durability.
In summary, the reliability and durability of V-belt tensioners are critical for ensuring consistent tension in V-belt systems. Factors such as construction materials, bearing quality, sealing and lubrication, tensioner design and engineering, testing and quality control, maintenance and service, as well as the manufacturer’s reputation and warranty, all contribute to the overall reliability and durability of the tensioners. By selecting high-quality tensioners and following proper maintenance practices, users can ensure consistent tensioning and maximize the performance and lifespan of V-belt systems.
What is the impact of proper tensioning on the lifespan and reliability of V-belts?
Proper tensioning is crucial for the lifespan and reliability of V-belts. The correct tension ensures optimal power transmission, minimizes belt wear, and reduces the risk of belt failure. Here’s a detailed explanation of the impact of proper tensioning on V-belts:
- Prevents Slippage:
- Reduces Wear:
- Optimizes Power Transmission:
- Minimizes Belt Stretch:
- Enhances Belt Lifespan:
- Improves System Reliability:
Proper tensioning prevents belt slippage, which can occur when the tension is too loose. Slippage leads to inefficient power transmission, reduced belt lifespan, and poor performance of the driven components. By maintaining the appropriate tension, V-belt tensioners prevent slippage and ensure efficient power transfer.
When V-belts are under-tensioned or over-tensioned, excessive wear occurs. Under-tensioning can cause belt slapping, increased flexing, and accelerated wear on the belt’s sidewalls. Over-tensioning can lead to excessive stress on the belt, resulting in premature wear, cracking, and potential belt failure. Proper tensioning helps distribute the load evenly across the belt, reducing wear and extending its lifespan.
Proper tensioning ensures optimal power transmission between the driving and driven components. When V-belts are correctly tensioned, the belts effectively grip the pulleys, enabling efficient transfer of rotational force. This maximizes power transfer efficiency, minimizes energy losses, and improves the overall performance of the system.
V-belts naturally undergo some stretch during operation due to the forces and tension they experience. However, excessive belt stretch can lead to reduced tension and compromised power transmission. Proper tensioning helps minimize belt stretch, maintaining the desired tension level and preventing loss of power and belt misalignment.
By maintaining the proper tension, V-belt tensioners contribute to extending the lifespan of V-belts. Proper tensioning reduces wear, prevents slippage, and minimizes stress on the belts, thereby reducing the risk of belt failure. V-belts that are correctly tensioned are more likely to operate reliably over a longer period, reducing the need for frequent replacements and associated downtime.
Proper tensioning of V-belts improves the overall reliability of the system in which they are used. Reliable power transmission ensures consistent performance of the driven components, reducing the likelihood of unexpected breakdowns or malfunctions. This is particularly crucial in applications where system downtime can have significant financial or operational consequences.
In summary, proper tensioning plays a vital role in the lifespan and reliability of V-belts. It prevents slippage, reduces wear, optimizes power transmission, minimizes belt stretch, enhances belt lifespan, and improves system reliability. By ensuring the correct tension, V-belt tensioners contribute to efficient and reliable operation, reducing maintenance requirements and maximizing the longevity of V-belts in various applications.
Can you describe the various types of V-belt tensioners, such as spring-loaded or automatic tensioners?
There are several types of V-belt tensioners used to maintain proper tension in V-belt drive systems. Here’s a description of some common types of V-belt tensioners:
- Spring-Loaded Tensioners:
- Automatic Tensioners:
- Hydraulic Tensioners:
- Torsion Arm Tensioners:
- Idler Pulley Tensioners:
Spring-loaded tensioners are widely used in V-belt drive systems. They consist of a pulley mounted on a movable arm that is spring-loaded. The tensioner arm applies a constant force on the V-belt, keeping it in proper tension. The spring compensates for belt stretch and wear over time, ensuring consistent tension and preventing belt slippage. These tensioners are relatively simple and economical, making them a popular choice in various applications.
Automatic tensioners, also known as self-adjusting tensioners, are designed to automatically maintain the proper tension in V-belt drive systems. They typically incorporate an internal mechanism that responds to changes in belt tension. When the belt stretches or wears, the tensioner automatically adjusts the position of the pulley or applies the necessary force to maintain optimal tension. Automatic tensioners eliminate the need for manual adjustment and ensure continuous and reliable belt tensioning.
Hydraulic tensioners are commonly used in applications that require precise and constant tension in V-belt drive systems. They utilize hydraulic pressure to maintain the desired tension. Hydraulic tensioners consist of a pulley mounted on a hydraulic piston. The tensioner is connected to a hydraulic circuit that applies pressure to the piston, allowing for precise tension adjustment. These tensioners are often used in demanding applications where accurate tension control is critical, such as high-performance engines or heavy-duty machinery.
Torsion arm tensioners, also known as pivot arm tensioners, feature a pivoting arm mechanism. The tensioner arm is connected to a pivot point and applies tension to the V-belt by rotating around the pivot. The tension is adjusted by changing the position of the pivot point. Torsion arm tensioners offer flexibility in tension adjustment and are commonly used in applications where space constraints or mounting limitations exist.
Idler pulley tensioners are a type of V-belt tensioner that incorporates an additional idler pulley. The idler pulley is positioned in contact with the V-belt, applying tension by exerting pressure on the belt. The tension is adjusted by changing the position of the idler pulley. Idler pulley tensioners are often used in applications where additional belt wrap or redirection is required, or where specific tensioning requirements exist.
These are just a few examples of the various types of V-belt tensioners. The choice of tensioner type depends on factors such as the specific application, belt drive system requirements, space limitations, and desired tensioning method. Each type of tensioner offers different advantages and is suited for particular applications, allowing for efficient and reliable tensioning of V-belts in a wide range of industries and machinery.
editor by CX 2024-02-12
China Custom Auto Bearing Belt Tensioner Pulley Part Number 1079173 1079173 Vkm14108 for CZPT Fiesta and Mondeo near me factory
Product Description
Quick view:
Description | Auto Bearing Belt Tensioner Pulley Part Number 157173 157173 VKM14108 For CZPT FIESTA And MONDEO |
Material | Chrome steel Gcr15, 65Mn, or 55, Aluminum |
Application car makes | For FORD |
Size | Outer: 74 mm Width: 24 mm |
Position | Engine spare parts |
Weight | 0.3 kg |
Brand | SI, PPB, or customized |
Packing | Neutral, SI, PPB brand packing or customized |
OEM/ODM service | Yes |
Manufacture place | ZHangZhoug, China |
MOQ | 100 PCS |
OEM replacement | Yes |
Inspection | 100% |
Warranty | 1 year or 40,000-50,000 KMS |
Certificate | ISO9001:2015 TS16949 |
Payment | T/T, PayPal, Alibaba |
Fit for:
For CZPT C-MAX (DM2) 1.8 TDCi 2007-2571
For CZPT FIESTA 2000-2003
For CZPT FOCUS 1999-2012
For CZPT GALAXY (WA6) 1.8 TDCi 2006-2015
For CZPT MONDEO IV 2007-2015
For CZPT S-MAX (WA6) 1.8 TDCi 2006-2014
For CZPT TOURNEO CONNECT 1.8 TDCi 2002-2013
For CZPT TRANSIT CONNECT (P65_, P70_, P80_) 1.8 2002-2013
OE Numbers:
157173
1113174
1215978
1479084
2T1Q06K254AA
2T1Q6K254AA
2T1Q6K254AB
X1C1Q6254AA
XS4Q6B217AD
XSQ6B217AD
YS4Q6K254AB
1E1112700
Reference:
For DAYCO: ATB1001
For FEBI BILSTEIN: 15176
For FEBI BILSTEIN: 21972
For I-NA:
For S-KF: VKM14108
For SNR: GT352.21
For TIMKEN: TKR9296
Packing and Delivery:
Work shop:
Exhibitions:
FAQ:
Q1.What is your shipping logistic?
Re: DHL, TNT, FedEx express, by air/sea/train.
Q2:What’s the MOQ?
Re: For the belt tensioner, The MOQ is always 100 sets. If ordering together with other models, small quantities can be organized. But need more time due to the production schedule.
Q3. What are your goods of packing?
Re: Generally, our goods will be packed in Neutral white or brown boxes for the hub bearing unit. Our brand packing SI & CZPT are offered. If you have any other packing requests, we shall also handle them.
Q4. What is your sample policy?
Re: We can supply the sample if we have ready parts in stock.
Q5. Do you have any certificates?
Re: Yes, we have the certificate of ISO9001:2015.
Q6:Any warranty of your products.
Re: Sure, We are offering a guarantee for 12 months or 40,000-50,000 km for the aftermarket.
Q7: How can I make an inquiry?
Re: You can contact us by email, telephone, WhatsApp, , etc.
Q8: How long can reply inquiry?
Re: Within 24 hours.
Q9: What’s the delivery time?
Re: Ready stock 10-15 days, production for 30 to 45 days.
Q10: How do you maintain our good business relationship?
Re: 1. Keep stable, reliable quality, competitive price to ensure our customer’s benefit;
2. Optimal lead time.
3. Keep customers updated about the new goods.
4. Make customers satisfaction as our main goal.
Q11: Can we visit the company & factory?
Re: Yes, welcome for your visit & business discussion.
Why Timing Belts Are So Important
What is a timing belt? A timing belt is a toothed synchronous belt that transfers rotary motion from the central motor to the drive pulley. Newer cars often have a synchronous timing belt to increase efficiency. Compared to traditional belts, these are quieter and more efficient. However, they do have their drawbacks. In this article, you’ll learn why timing belts are so important. And if you’re wondering how to replace them, keep reading to find out how you can do this quickly and affordably.
Timing belts are toothed, synchronous belts
Toothed, synchronous, and cogged belts are the 3 most common types of mechanical drive belts. Both toothed and synchronous belts are designed to run over pulleys with corresponding teeth. This positive engagement prevents slippage and speed loss. Timing belts can be toothed or toothless, and the toothed profile meshes with the grooves of the sprocket. They improve energy efficiency and reduce downtime. They are also smaller, quieter, and require no lubrication. These properties allow synchronous belts to operate at higher speeds than chains and gears.
These toothed belts are commonly used in motorcycles and automobiles. They are highly durable and can provide more power than friction-drive belts. Toothed belts are often designed for high-power transmissions and the primary drive of some motorcycles. While timing belts and synchronous belts may seem similar, they are quite different. Synchronous belts, or “toothed belts,” have 2 distinct failure modes. The former is gradual and preventive, whereas the latter is catastrophic.
Despite their similarities, timing belts are often not compatible with all machines. Excessive installation tension will result in belt tooth shear and stress breakage. The teeth of timing belts show signs of excessive tension, as illustrated in Figure 6. Broken teeth are caused by root cracks, which propagate along the tensile member. The individual teeth of the belt will separate from the body of the timing belt.
Synchronous belts have various advantages. Synchronous belts are generally more durable, as they have low installation tension and less stress on the drive system. However, when choosing a timing belt, it is important to consider the conditions that apply to your application. Ideally, you will choose a toothed belt with the lowest possible installation tension. Then, you’ll be on your way to a more efficient drive.
They transfer rotary motion from the central motor to the drive pulley
Timing belts are a common type of transmission, which transfers rotary motion from the central motor to the driving pulley through a series of pulleys. Their basic design is the same as an open belt drive, but they have an idler pulley in the middle to increase the tension and power transfer. Another type of drive is a stepped pulley, which allows different speeds and torques to be obtained.
The center distance between the pulley and the drive pulley determines their distance from each other. The distance between the pulley and the drive pulley determines how much power is transmitted through each pulley. When the pulleys are cross-connected, they cannot transmit as much power as they could if they were parallel, which limits the transmission of torque and prevents parts from breaking.
The main advantages of a timing belt are its comparatively low weight and low maintenance requirements. It has a tensile strength of about 90 percent and is also resistant to harsh conditions. The best timing belt pulleys are made of steel because they are resistant to wear and corrosion and can handle long-term chemical exposure. Plastic timing belt pulleys are also available. These are the lightest and cheapest options for the operator.
Another type of timing belt is a spring belt. Like elastic belts, spring belts are composed of a helical steel spring. They are typically used in model and toy engines for transmission from the crankshaft to other parts of the vehicle. Compared to elastic belts, spring belts last longer and do not have to be adjusted, although the spring belts are more likely to slip under heavy loads.
They are quieter
When choosing a replacement timing belt for your car, consider whether you prefer a rubber belt or a metal one. Rubber timing belts are more prone to wear out over time, while metal timing chains are durable and last longer than their rubber counterparts. Timing belts and chains both need maintenance to keep them operating smoothly and quiet. Listed below are some of the most common benefits of timing belts. Read on for more details.
While both timing belts and chains perform the same function, timing belts are quieter and more affordable. Although timing belts are cheaper to produce, they last less. In addition, timing chains are stronger and less likely to fail. If you’re considering changing your timing belt, you can find a good video about the pros and cons of each. Both belts and chains work to optimize fuel economy, reduce emissions, and improve engine efficiency.
Timing belts are much quieter than rubber belts. However, they are not as effective at regulating engine timing. If you’re concerned about noise when changing timing belts, make sure they’re properly fitted. If your timing belts are too loose, they can cause engine damage. A loose timing belt can force other parts out of sync, and can even cause a serious engine malfunction. Timing belts are quieter than rubber belts, but they’re no match for the sound-proofing properties of rubber.
While the noise of a timing belt can be bothersome, it’s a simple process that will help you drive your car more quietly. Their function is simple and straightforward: the timing belt keeps the engine running at the right speed, and they’re also cheaper than other mechanisms. They’re also easier to maintain and use at high speeds without any problems. Timing belts are available in many different tooth profiles, pitch lengths, widths, and materials. Some manufacturers even offer customized belts for specific purposes.
They are more efficient
Timing belts are more efficient than chains because they have a smaller cross-section and smaller bend radius. These characteristics also enable them to have a smaller overall cost. However, because they require more energy to operate, V-belts are typically chosen because of their relatively low face-value cost. This is because they are less expensive overall, but can cost more over time when you factor in their operational costs. Even so, the initial product cost can be paid off in the first month or 2 with energy savings.
Using a timing belt can greatly improve energy efficiency in many applications. Not only does it increase the torque and power transmitted, but it also minimizes friction and elongation losses. This can lead to a 15 percent energy savings, which is equivalent to EUR 2,390 per year in energy costs! The benefits of timing belts are also numerous. By eliminating the need for tooth-drive sprockets, timing belts can improve the efficiency of a drive system.
In many automobiles from the 1980s to the early 2000s, timing belts were a popular choice. This is because they were less expensive and durable, yet still capable of maintaining the correct timing of an engine. However, timing chains are more reliable these days, and many drivers opt for them over timing belts. They are quieter and last longer, which makes them more desirable for drivers. In general, timing chains are cheaper but less efficient than belts.
Timing chains were a more expensive option, but the oil crisis pushed manufacturers to make cars with fuel efficiency their top priority. With timing belts, manufacturers realised that they were cheaper, easier to install, and more reliable. However, timing chains had a few drawbacks. One of the main disadvantages was that they were harder to replace, and required more engine oil. But with the price of fuel and gas, timing chains were preferred by many drivers.
They require lubrication
Timing belts are an integral part of engine performance. They keep the engine’s valves open and closed at the correct times and are designed to fit around the gears inside the engine. Timing belts do not require lubrication but are still important to keep the engine working smoothly. Self-servicing car parts can be used to maintain the health of your timing belt. Here are some helpful tips for self-servicing your timing belt.
When timing belts are wearing out, they can cause a noise. This noise is usually due to impact, where the belt tooth engages with the pulley. While the noise isn’t particularly annoying, it can be damaging over time. The second noise that you may hear is called air volume displacement. It occurs when air fills the space between the belt and the pulley and increases with the speed of the engine.
In addition to timing belts, timing gears and chains are often inaccessible, with their hidden mechanisms. The year and type of engine will determine which type you have, but each type is susceptible to wear and tear. Timing gears and timing belts are usually coated in engine oil for protection. Lubricating them regularly will ensure that they work as they are supposed to. These belts can also be driven by other components in the engine, which will require lubrication.
Oil leaks can lead to timing belt failure. If you notice a leak in the oil, try to identify it as soon as possible. Getting your timing belt replaced will prevent downtime caused by engine failure. You may also notice clunks, grinding noises, and knocking sounds under the vehicle. These are common signs that your timing belt needs lubrication. You can reduce the chances of these problems by regularly changing the engine oil and making sure it is of high quality.
China Standard for Volkswagen Transporter and for CZPT S80 Timing Belt Tensioner Pulley OE Number 074109243e 074109243m Vkm11257 with Best Sales
Product Description
Quick view:
Description | VOLKSWAGEN TRANSPORTER And For CZPT S80 Timing Belt Tensioner Pulley OE Number 074109243E 074109243M VKM11257 |
Material | Chrome steel Gcr15, 65Mn, or 55, Aluminum |
Application car makes | For CZPT and VW |
Size | Outer: 73 mm Width: 27 mm |
Position | Timing tension |
Weight | 0.4 kg |
Brand | SI, PPB, or customized |
Packing | Neutral, SI, PPB brand packing or customized |
OEM/ODM service | Yes |
Manufacture place | ZHangZhoug, China |
MOQ | 100 PCS |
OEM replacement | Yes |
Inspection | 100% |
Warranty | 1 year or 40,000-50,000 KMS |
Certificate | ISO9001:2015 TS16949 |
Payment | T/T, PayPal, Alibaba |
Fit for:
For CZPT 850Estate(855)(08.1995-12.1996,140)
For CZPT 850Saloon(854)(08.1995-12.1996,140)
For CZPT S70(LS,874)(01.1997-11.2000,140)
For CZPT S80I(TS,184)(01.1999-07.2006,140)
For CZPT V70I(LV,875,876)(12.1995-12.2000,140)
For CZPT V70II(SW,285)(11.1999-08.2007,140)
For VOLKSWAGEN CRAFTER 30-35 Bus (2E_) 2.5 2006-2013
For VOLKSWAGEN LT 28-46 II 1996-2006
For VOLKSWAGEN TRANSPORTER IV 1996-2003
OE Numbers:
8677053
9186258
9464101
074109243E
074109243K
074109243M
E
74109243K
M
Reference:
For DAYCO : ATB2333
For CZPT : T43067
For I-NA :
For S-KF : VKM 11257
For CZPT : GT36504
Packing and Delivery:
Work shop:
Exhibitions:
FAQ:
Q1.What is your shipping logistic?
Re: DHL, TNT, FedEx express, by air/sea/train.
Q2:What’s the MOQ?
Re: For the belt tensioner, The MOQ is always 100 sets. If ordering together with other models, small quantities can be organized. But need more time due to the production schedule.
Q3. What are your goods of packing?
Re: Generally, our goods will be packed in Neutral white or brown boxes for the idler pulley. Our brand packing SI & CZPT are offered. If you have any other packing requests, we shall also handle them.
Q4. What is your sample policy?
Re: We can supply the sample if we have ready parts in stock.
Q5. Do you have any certificates?
Re: Yes, we have the certificate of ISO9001:2015.
Q6:Any warranty of your products.
Re: Sure, We are offering a guarantee for 12 months or 40,000-50,000 km for the aftermarket.
Q7: How can I make an inquiry?
Re: You can contact us by email, telephone, WhatsApp, , etc.
Q8: How long can reply inquiry?
Re: Within 24 hours.
Q9: What’s the delivery time?
Re: Ready stock 10-15 days, production for 30 to 45 days.
Q10: How do you maintain our good business relationship?
Re: 1. Keep stable, reliable quality, competitive price to ensure our customer’s benefit;
2. Optimal lead time.
3. Keep customers updated about the new goods.
4. Make customers satisfaction as our main goal.
Q11: Can we visit the company & factory?
Re: Yes, welcome for your visit & business discussion.
How to Prevent Timing Belt Problems
Unlike their predecessors, timing chains and timing belts are made of rubber and synchronize the opening and closing of valves in the engine. While their benefits are numerous, they are prone to wear and tear over time. Here are some tips for ensuring your timing belt lasts for many years. Listed below are some of the most common problems that you may encounter when changing your timing belt. Read on to find out how to prevent them and keep your car running at peak performance.
Timing belts are rubber
There are many advantages to using timing belts in your car. They are lightweight and reduce the strain on your vehicle’s internal components. They are also quiet when running, so you won’t have to listen to your car to know that maintenance is needed. If you’re concerned about noise, a quiet engine can help you determine whether your timing belts are broken or if you need to replace them altogether. A quiet engine can also help you notice signs of wear and tear before you do.
Regardless of material, rubber timing belts can be susceptible to stretching and breaking. They also are susceptible to high temperatures and the lubrication of motor oil, reducing their lifespan. Manufacturers have responded to this problem by creating timing belts made of engine-temperature-resistant rubber materials. The improved rubber compounds also provide greater strength and resistance to distortion. Reinforcing fibers also protect the teeth from shearing, reducing the risk of a worn-out timing belt.
While the open-ended, or spliced, types of timing belts have many advantages, they are generally unsuitable for high-speed applications. In most cases, rubber timing belts are used in high-speed machine tools and automatic doors. They are also quiet and require minimal maintenance. These characteristics make rubber timing belts a great choice for high-speed applications. You can even order custom-made timing belts for unusual applications.
Timing belts are important for the functioning of an engine. They link the camshaft and crankshaft to the crankshaft. They control the movement of valves and pistons. If a timing belt fails, it can cause major damage to the engine. If you are unsure of the benefits of rubber timing belts, consider a video on the topic. This will provide you with more information on timing belts.
They synchronize the opening and closing of the engine’s valves
During the combustion process of the engine, the valves in the cylinder head open and close. Fresh air enters the cylinder, which burns with the fuel to generate power. Exhaust escapes the engine through the exhaust valve. Each cylinder contains between 2 and 4 valves. The timing belt drives a camshaft, which rotates in a precise manner to synchronize the valve opening and closing.
A timing belt is a toothed rubber belt that connects the engine’s crankshaft to the crankshaft. Like most rubber parts, timing belts degrade over time, so it’s important to replace them at the proper intervals. Replacement intervals vary depending on the make and model of the vehicle, but they should be replaced every 60 to 90 thousand miles.
A broken timing belt will not start the engine. A timing belt driven vehicle will need to be towed to a repair shop for repairs. In the automotive industry, timing belts drive both “free running” and “interference” engines. The timing belt transfers the crankshaft’s rotation to the camshafts, which in turn actuate the valves in the intake and exhaust system. When they malfunction, the pistons can contact open valves, bending or punching them.
Timing belts also work with pistons and connecting rods to create power. Perfect timing is essential for the engine to run smoothly. The timing belt regulates both the pistons and the valves. If they are out of sync, they may not ignite properly, leading to catastrophic engine failure. When you’re looking for a replacement, look for these signs of wear.
They are lighter, quieter and more efficient than timing chains
While the initial choice was for quieter performance, variable timing has led to greater efficiency and power. While noise is a factor, the average consumer cannot tell the difference. And while timing belts are generally lighter and quieter, a chain can be more noisy than a belt, which can cause more engine damage. If you’re unsure whether you should opt for a chain or a belt, consult your owner’s manual.
A timing chain functions similar to a timing belt but is made from metal and is housed inside the engine compartment. It receives its lubrication from engine oil. Timing chains can last a long time as long as you keep them properly maintained. A timing chain is not as efficient as a timing belt, but it is more accurate, quieter and easier to maintain.
A timing belt uses teeth to time the movement of various components in an engine. When the timing belt is broken, the valves in the engine will not be in sync, leading to a loss of pressure in the combustion chamber. This can cause a plethora of engine problems and cost-increasing repairs. A timing belt is also quieter and requires less lubrication, so it is safer and quieter than a timing chain.
After the advent of variable valve timing, cars began to use a timing chain. This design improved engine performance and reduced maintenance, but it also caused a backlash as consumers were no longer interested in this kind of routine maintenance. Today, however, timing chains are making a comeback in the automotive industry. While modern chains can still be noisy, they are easier to maintain, are lighter, and last longer than their chain counterparts.
They wear out over time
Even the best drive belts will eventually wear out. The main causes of belt wear include mileage and heat. The belt bends as it passes the pulley, producing heat that hardens the rubber. When the belt slips, it increases friction, accelerating the process. A worn-out belt can be very difficult to start, causing an engine to lose fuel efficiency. To help prevent this problem, check the belt for wear and tear.
A timing belt is an engine component that connects the camshaft to the crankshaft and controls the timing of combustion. These belts are made of industrial-strength rubber, and often contain nylon-reinforced cords. Although they are meant to last, they will eventually wear out. If the timing belt fails, your engine won’t run smoothly or you could spend thousands of dollars fixing it.
A faulty timing belt can cause the valves to open too early or too late, causing poor combustion and a drop in engine performance. If the timing belt breaks, the valves may hit the pistons and cause damage. This can lead to engine breakage, which requires a new engine. To prevent this, you should replace the timing belt every couple of thousand miles. If you can’t find a reliable mechanic, it is best to seek professional help from a reputable mechanic.
Another warning sign that your timing belt needs replacing is a ticking sound coming from within your engine. This is an indication of a lower oil pressure than normal. Low oil pressure can affect the timing belt as it can cause the tensioner that holds the belt taut will lose pressure. Eventually, the belt may even break, allowing the camshafts to slip and break. Once this happens, it is time to replace the timing belt.
They can be repaired
Timing belts can be repaired. If your timing belt breaks, you can take your car to a repair shop to have it repaired or replaced. The price of a repair depends on the labor hours and how many hours it takes to do the job. A bad timing belt can ruin your engine and cause it to break down completely. If you’re unable to drive your vehicle, it may require towing and a new engine.
For most drivers, a timing belt replacement will cost about $1,000 at a dealership. Luckily, you can often get the same service for less at an independent auto repair shop. Often, a timing belt repair requires replacing the water pump, too. It makes sense to replace both at the same time. But remember that timing belts are more complicated than that. If you’re worried about the cost, you can replace the water pump along with the timing belt.
If you’re in the mood to do this repair, there are many companies that offer this service. The cost is relatively low and you’ll probably save hundreds of dollars over the course of the job. However, timing belt repair is not a simple job and must be done correctly or you could end up damaging your car engine. Therefore, it’s important to know how to repair a timing belt yourself to avoid the high price of hiring a mechanic.
When timing belts start to fail, there are a few warning signs you can listen for. A difficult start-up can be a sign that your belt needs to be replaced. Also, thick smoke coming from the tailpipe can be a sign that the timing belt needs to be changed. In addition to these symptoms, your timing belt may have a crack or broken gear teeth, which means it needs to be replaced.